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1 Executive summary

As part of the COPRO project models for industrial processes are developed and used for
optimization of the processes. When models are developed and used it is important for users of the
models to know whether the predictions from the models can be trusted. Therefore, this
workpackage is concerned with model quality and model uncertainty.

This report presents a summary of the analysis that PSE and Divis conducted on how model quality is
established during the model generation process, measures that are commonly used to quantify
model quality and factors that influence these measures in practise. These measures generally signify
how accurately a model will predict outputs of interest for previously unseen inputs. It also describes
the ways model quality information is presented to the user of modelling tools, in this case PSE’s
hybrid modelling tool (developed as part of the COPRO project), INEOS Best Demonstrated Practise
(BDP) toolbox (extended as part of the COPRO project) and Divis ClearVu analytics toolbox.

The concept of model uncertainty is closely related to model quality. Model uncertainty together
with model input uncertainty signifies how accurate a model will predict under certain conditions.
Practical approaches to determine this uncertainty and work with it are discussed.

Finally, this report considers model maintenance. Guidelines are given for maintaining models in an
organization and aspects that influence maintenance are discussed (model serialization / file storage
formats, model meta information, accessibility of models). This aspect of the report has a strong link
to COPRO Deliverable D5.5: Requirement Specification and Functional Design Specification of the
COPRO Model Management Platform.
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2 Model quality

2.1 Introduction

Model quality is first encountered during the model generation process. Measures for model quality
are typically employed here to determine whether a particular model is “good enough” for use or to
aid in the selection between different model architectures or values of hyper-parameters for a given
model architecture. Therefore, in this Chapter this model generation process is reviewed to
determine how concepts of model quality relate to it. The endpoint of the model generation process
is typically a model with a desired quality according to a chosen measure.

As part of this document, data pre-processing is also briefly covered. The reason for this is that in this
pre-processing step the modeller can choose to exclude/manipulate data that is deemed difficult to
predict by the chosen modelling approach. When the model is then generated, model quality
measures are applied to the model together with the pre-processed dataset (instead of the original
dataset). Therefore, the pre-processing will affect the perceived model quality.

An important part of a discussion on model quality is how to convey the relevant information to the
user of a modelling tool. As part of the COPRO-funded development of PSE’s modelling tool a Ul
element has been designed that presents a summary of model quality information for any data-
driven model included on a gPROMS (Process Systems Enterprise (PSE) Lmtd., 1997-2018) flowsheet.

Next, the monitoring of the model quality is discussed: how can the user be informed of the quality
of predictions for “new” data? There are different scenarios for monitoring, depending on whether
the model is used to predict batches of new data or single samples and whether measured outputs
for this new data are available or not. Three industrial case studies from the COPRO project are used
to illustrate how the model quality is considered in these case studies: a cooling tower data-driven
model (Lenzing, Divis), a granulation soft-sensing example (PSE) and models for NH; network
optimisation (INEQS, TUDO).

In addition to measurable concepts of model quality, there are also certain aspects of how a model is
used in an organisation that will influence the level of trust users have in the model (perception of
model quality). In particular, model meta information might influence this level of trust. For example,
if it is known that a model was derived recently by a colleague who’s expertise in relation to the
process that is modelled, is trusted, a user might place more trust in the model. This aspect is not
considered here but discussed further on in this document, namely Section 4.2.

Throughout this document it will be assumed that the model being generated is either a “first-
principle” or “data-driven” model. Where there are differences between both modelling approaches
in terms of workflow or model quality measures employed, this will be indicated.

This document only covers regression and not classification. It is also restricted on supervised
learning. Finally in the case of prediction of time-series, this document only covers models that are of
the Finite Impulse Response (FIR) type.
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2.2 Model generation

2.2.1 Workflow

The typically recommended workflow for model generation is shown conceptually in Figure 1. First, a
series of pre-processing steps are required to select the data relevant for the model generation from
the raw dataset. This recommended workflow can be used for both data-driven or first-principle
modelling. A short overview of this workflow is given in this section, in the rest of chapter will look at
individual aspects of this workflow and their influence on model quality in more detail.

After this, the data is split between a training set (used to fit and validate a model) and a test set
(used to perform “external validation”, i.e. to determine expected model quality). The training set is
used to fit the model and make choices regarding the model structure. The test set is used to
evaluate a model after it has been fitted with the training set. Since the testset was not used when
fitting the model, the performance of the model in predicting testset samples will give a good
indication of the performance of the model to fit any “new” or “unseen” samples.

Depending on whether multiple model architectures/approaches can be chosen or whether multiple
choices can be made for hyper-parameters of the model, a model selection or Hyper-Parameter
Optimisation (HPO) loop can be added. In this loop the model is fitted for different choices of the
architecture or “hyper-parameters” and N-fold cross-validation is used to assess the expected model
guality of each choice and prevent overfitting (see e.g. (G. James, 2017)). Depending on this expected
model quality, a choice for the model architecture/hyper-parameters can be made. For machine
learning applications, hyper-parameter optimisation (e.g. the number of basis vectors in a Partial
Least Squares model, (Wold, 1985)) is commonly a part of the fitting procedure.

For first-principles modelling, this type of optimisation is less automated, but does also occur: the
modeller typically changes the model assumptions, architecture and parameters that are estimated
based on how well the model is able to represent the data in the training/validation step. . These are
typically manual re-modelling steps.

Finally, the chosen model architecture with the fitted parameters is applied in prediction mode to
the test set and model quality criteria are applied to judge whether the model is “good enough”. This
can be referred to as “External Model Validation”. When the model is deemed not be good enough
the entire model generation procedure should be repeated and likely new or additional data needs
to be used.
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Figure 1 Workflow for model generation
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2.2.2 Data-pre-processing

An important step in both first-principles modelling and data-driven modelling is pre-processing of
the data. In this step, the raw data that is received is modified in certain ways before it is used as an
input to any model validation or machine learning algorithm. These modifications include selection
of a subset of the data as being relevant, applying signal processing functions like smoothing,
centering, de-trending. Also outliers may be removed and if the data contains heterogeneous
quantities, it may be scaled/normalised. These pre-processing steps often involve human analysis
and decisions and can account for 90% of the time spent on modelling. During this process, typically
also some decisions are made on the “scope” of the modelling endeavour: for which situations
should the model give accurate predictions?

2.2.2.1 Selecting relevant data
In many cases, a dataset originating from plant or lab measurements contains both relevant and not-
relevant data. Data can be not relevant because of gross measurement errors, errors in the
procedure used to obtain the data, or because it covers operating points that are not relevant to the
purpose of the model. In these cases it is desirable to remove this data prior to fitting the model.

Before applying any fitting procedures the following algorithms can be used to limit the data that is
used for model fitting:

e Selecting data that is in the relevant operating range based on expert knowledge.
e Steady-state detection

e Removal of outliers

e Selecting subsets of data based on clustering algorithms

e General filtering operations

A key point in relation to model quality for these pre-processing steps is that any pre-processing
steps that remove certain areas of the original dataset will restrict the validity region of the
generated model. For example if only data in a certain operating range is selected, then the
generated model will only give valid predictions in this operating range. The effect on model validity
of certain pre-processing steps (e.g. restricting the data to the operating region where “high-spec”
product is produced) needs to be clearly communicated to the users of the model. Users of a model
might, for example, not be aware that a model has been derived from data that has been pre-
processed in such a way that the resulting model is not valid under the conditions where they intend
to use it.

Process industries

In the process industries the data either originates from measurements and sensors in a
laboratory or from instrumentation in-the-field.

Laboratory data in many cases has been generated explicitly for the purposes of constructing the
model. It might cover the range of desired conditions well if the experiments have been designed
properly. On the other hand, since measurements are expensive, the quantity of data might be
limited. Moreover, the scale at which the laboratory experiment has been conducted is different
from that of the plant.

When the data originates from online analysers in the field, it is typically obtained from process
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historians. These might yield plentiful data from years of operation, but that data might be for a
limited number of operating points or it might contain a lot of data that is not of interest (plant
startup/shutdown, ...).

2.2.2.2 Scaling of input and output data and measurement variance
Before discussing model quality measures, it is important to discuss scaling of input and output data.
This scaling process will affect the perceived model quality since model quality criteria are typically
applied to scaled output data.

For many applications, the input data contains heterogeneous quantities, (i.e. for example
temperatures, pressures and concentrations instead of only temperatures). In addition not all input
data has been measured using the same accuracy. Scaling is typically employed to capture this
knowledge about the input data in the models that are fitted. Scaling can be done in two ways: per
input variable or per (set of) samples. Scaling per variable is often used to account for the fact that
different variables in the input data represent different “quantities”. In order to assess the relative
importance of predicting each of these quantities well, they need to be normalized with respect to
each-other in some way.

In machine learning applications, often little a-priori knowledge is available about the accuracy of
each particular measurement or it is assumed that quantities can be measured very accurately. For
this reason, common scaling approaches are to scale each measurement with its observed variance,
range (max — min) or a reference / average value.

In first principles modelling, typically more a-priori information is used about the quality of certain
sensors that produce the data. This information is provided for example in the form of sensor noise
characteristics. Typical characteristics are constant variance, constant relative variance and
heteroscedastic (combination of constant and constant relative variances), with known or estimated
parameters. When a constant variance approach is used and the variance is specified as the observed
variance in the data, this is equivalent to the typical scaling approach used in machine learning.
When a non-constant variance model is employed, the variance of each individual sample depends
on the sample value (heteroscedasticity). A first-principles tool like gPROMS (Process Systems
Enterprise (PSE) Lmtd., 1997-2018) can also estimate unknown variances together with parameters.
This functionality is not employed commonly in practise. It should be used when variances are not
known a-priori by the modeller to get meaningful results from statistical tests during model
validation (see Section 2.3.2), but it adds extra degrees of freedom the estimation problem which
means the problem might be slower and/or more difficult to converge to a solution.

An important difference between first principles modelling and a significant number of statistical
modelling approaches is that first principle modelling often produces Multiple-Input-Multiple-Output
(MIMO) models where a common set of parameters is used to predict all outputs as well as possible.
In statistical learning approaches most commonly a set of Multiple-Input-Single-Output (MISO)
models is produced although MIMO models are also encountered. For MISO modelling of data which
has multiple measurements, each of the models in this set has its own set of parameters. The
implication of this difference in how often MISO versus MIMO modelling is used on scaling is that for
first-principle models it is more important to scale the outputs relative to each-other whereas for
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most statistical modelling approaches this is less relevant. In practise, this is an advantage of
statistical modelling: less a-priori information about the instrumentation is commonly needed.

In certain cases, however, scaling is also important for MISO system. A common example of this is for
guantities that can approach or cross 0. Here typically the approach taken depends on whether
relative errors or absolute errors are important. In first-principles modelling applications, the error
on individual samples is scaled according to the sensor accuracy. This sensor accuracy can be a
measure that is relative to the quantity being measured (e.g. “accurate to within 5% of the measured
value”). In machine learning applications a log transformation may be applied to the outputs in this
case to achieve the same effect.

When there is significant measurement uncertainty for the measured quantities that form one or
more of the model inputs, in a first-principles modelling application, model fitting approaches
whereby the inputs to the model are assumed to be exact, might be misleading. If model approaches
whereby input uncertainty is also taken into account are used, e.g. Total Least Squares (Groen,
1996), then scaling of input data also should be taken into account, because the errors on the inputs
become part of the overall criterion to evaluate the model.

Process industries

In the process industries typically, a limited number of physical quantities are measured using
online sensors: pressure, temperature, flowrates, composition. In addition, quality parameters
can be measured for the final or intermediate products that are often related to material
properties (tensile strength, melting point, flow-factor, ...). Commonly the variance of each sensor
can be inferred from the quantity it measures, the sensor type and/or manufacturer
specifications. But collecting this type of information might be a laborious process. In addition, for
older assets, this information might not be available.

It was mentioned by COPRO project partner INEOS that raw data from online analysers for steady-
states have such a high sampling frequency that measurement noise of sensors is reduced by a
large amount since in effect the same quantity is measured a large number of time. This reduces
the effective variation on this measured quantity when all the individual measurements are
averaged:
_Gi

Oeff = yn
Where g; is the standard deviation of a given sensor type, n is the number of measurements of
that sensor at the same conditions and g,y is the effective covariance. If n is large the effective
covariance of a sensor might be small. For this reason, INEOS commonly does not go through the
trouble of obtaining values g; but scales data from these sources based on covariances.

2.2.2.3 Centering
Commonly, before applying a fitting procedure for data-driven models, the mean of each variable
over all observations is subtracted from the observations of the variable. For first-principle models
this procedure is not commonly applied: The reason is that first-principle models generally predict
the data including its mean.
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2.2.3 Splitting the test and training data
A common procedure in modelling is to split the full dataset in a part used for training (fitting) of the
models and a part used for testing or validating the model. This split is typically random, and for
steady-state data it is assumed that samples are not correlated. A typical fraction for the ratio of the
size of the training and test sets is 70%/30%.

Current approach in process industries

In the process industries, when the data originates from laboratory experiments the quantity of
data might be limited. Therefore, in practise, the approach of splitting training and test data is not
always followed. The reasons for this is that it is perceived that there is not enough data available
to justify leaving a portion of the data out of the training set in order to obtain a statistically sound
approach.

For first-principle modelling, an additional reason may be that modellers assume (possibly
erroneously) that their proposed modelling architecture has captured the essential behaviour of
the process, and therefore the model will extrapolate well. In addition, in place of cross-validation
and external validation developers of first-principle models rely on statistical tests based on
measurement covariance estimation to prevent overparametrisation.

Finally, for both approaches, if a model is rejected based on the performance on the test set, the
approach may be to use the same dataset but change the model architecture and repeat the
procedure. In this case, the result may also be a situation where the model architecture and
parameters have been influenced by the test set.

2.2.4 Cross-validation
Cross-validation is an approach whereby the available training data is split randomly in a set of
samples used for fitting the model (“training set”) and a set of samples for cross-validating the model
(“validation set”). The model quality is assessed solely by evaluating the model on validation set
based on certain criteria. The purpose of this cross-validation process is to have a criterion to
evaluate candidate models on and aid in model selection between these candidate models.

In k-fold cross validations this process is repeated n times, each time selecting n*(k-1/k) samples
randomly for the training set and n/k samples for the test set. The validation scores (see next section
2.3 for scoring criteria) from these k-iterations are stored and can be aggregated to yield an overall
“validation” score. Its aim is to give an indication how well the model will perform for “unseen” data.
The validation score can be used to compare different models and select the best one during a Hyper
Parameter Optimisation (HPO) or model selection loop.

After the cross-validation is performed and the validated score is obtained, the model is then re-
fitted using the full dataset. The score for this is also stored. This is referred to as the “final” score.

A practical suggestion for the number of folds of the amount of data: generally, 5-fold for small
datasets (<100) or 10 fold for larger datasets.
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Table 1 Python snippet for performing cross-validation with scikit-learn.

from sklearn.model _selection import cross val_score
scores = cross_val_score(estimator, X, Y, \

scoring= “explained_variance”, cv=10)

Using the cross-validation approach to assess model quality can be problematic when the model is
used to forecast a time series. One characteristic of time series data is its inherent serial correlation,
so forecasting test data in the direct vicinity of training data may be “too easy” for a machine
learning algorithm and hence misleading in controlling the trade-off between overfitting and
generalisation capabilities of the model. The common n-fold cross-validation is valid for time-series
data in the case of a purely autoregressive model as shown by (C. Bergmeier, 2018).

ClearVu Analytics (Divis Intelligent Solutions GmbH, 2018) offers the user a so-called block-wise
cross-validation. With this approach the nfolds are not generated by uniformly choosing data points
from the whole data set, but the folds are composed of k time-continuous blocks, with k = 10-n. On
the borders of these blocks the data is still correlated to its neighbouring blocks. So, to minimise the
effect of inherent serial correlation the size of a block should be as large as possible.

Hyndman (C. Bergmeier, 2018) suggests another approach to validate a model for forecasting time
series. This approach ensures that no data from the future'is used to fit the model. The data is
divided into n time-continuous folds. Then the model is fitted with the first fold and tested on the
second fold. The third fold is used as test set for a model fitted on the first two folds. So, the amount
of training data grows until the nth fold is used as test set for a model fitted on the first n-1 folds.

2.3 Model quality measures

2.3.1 Scoring functions
To define how accurately a model can predict a given set of data samples, a measure of this accuracy
can be defined. This is referred to as “scoring”. The goal of scoring is to assess whether a model
predicts the data well and to assist in model selection (decisions on whether one model is better
than another), both when fitting (=training) the data and for cross-validation. It can also be used to
convey to the user of a modelling tool quickly whether the model is accurate for a given dataset.

Common criteria for scoring models are listed in

! Future w.r.t. the current test point

IMPROVED ENERGY AND RESOURCE EFFICIENCY BY BETTER COORDINATION 16

OF PRODUCTION IN THE PROCESS INDUSTRIES.



Deliverable 1.3 Report on model quality monitoring, model uncertainty quantification, and model
maintenance

Table 2, see also e.g. the scikit-learn metrics package ( (Pedregosa, 2011), http://scikit-
learn.org/stable/modules/model evaluation.html).
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Table 2 Commonly used scoring criteria for regression

Terminology Abbreviation Equation Notes
Prediction PRESS L Also referred to as “residual
5.2

Error Sum of Z(yi -9 sum of squares” (RSS) or sum

Squares l of squared residuals (SRR) or
sum of squared errors of
prediction (SSE).

Model MAE 1 <

Absolute Error n—1 2 Yi— Vi

i
Mean-Square- | MSE Also referred to as Mean

Error

n
1 5 )2
n_lz(yi—yi)
l

Coefficient of
determination.

Q> (when applied

to test
validation data)

or

R’ (when applied

to training data)

X0 —9)?
X —¥)?

Squared  Prediction  Error
(MSPE) if applied during
cross-validation.
02 =1 PRESS
- TSS

Upper bound Q*<1.

Also known informally as

“Goodness of fit”.

Pearson corr Xy =G, —9) Used by ClearVu Analytics
product- \/Z?(yi —P2YMG, — ¥)? (Divis Intelligent  Solutions
moment GmbH, 2018).
correlation
Maximum- ML-function In(f) Use by gPROMS (Process
. . 1 .
Likelihood = —Znin(2m) — nin(o) Systems  Enterprise  (PSE)
function n2 Lmtd., 1997-2018) for model
_ Z (i — 9:)? validation.
- 20'i2

Chi-squared x? L (i — §,)? Relies on specification of the
statistic Z 0,2 measurement variance.

i
Reduced  chi- Xo? 1 (v — §,)? Also known as Mean Square
squared ;Z 0,2 Weighted Deviation (MSWD)
statistic l
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Here nis the number of samples in the testset, y the measured output data for the tests, J the
model predictions, ¥ the mean of the measurements, ¢ the user-specified measurement
covariance’s for each measurement and TSS is the Total Sum of Squares of the test set data, defined
as:

n
1SS = ) i - 9
i

In summarizing these criteria for convenience, we assumed a MISO model structure. For the MSE and
MAE the Bessel correction is applied to reflect the fact that these provide an estimate of the
variance. Additionally, it is assumed that these criteria are applied to the test set. This means that the
number of degrees of freedom is n-1. Also, this is restricted specifically to criteria employed to
evaluate a chosen model on the test set. Typically, during hyper parameter optimisation / model
selection loop criteria that also include the complexity of the model are used (e.g. Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), “adjusted R*’) to prevent overfitting at this
stage. These criteria might be less computationally expensive to evaluate than an n-fold cross
validation, but e.g. a study by Divis (T. Back) has shown output based criteria such as PRESS when
combined with cross-validation to be superior in practise for a meta-modelling case study.

Comparing these criteria, the following observations can be made:

e The PRESS error criterion is continuously differentiable and weighs larger errors more
heavily. It is not normalized and more difficult to related intuitively to the range variable y
itself. The MSE is normalized to a single sample which makes it possible to compare errors on
datasets of different sizes.

e The MAE is not continuous but allows errors to be interpreted more easily since this error
has the same dimensions as the output itself.

e The Q? criterion has the advantage that, because its normalized, it can be used to quickly
make an assessment on whether the model predicts most of the variation in the data. For
applications where the measurement variance is an order(s) of magnitude smaller than the
variance due to changes in the process, e.g. a model with a Q of <0.8 is likely to be
inaccurate whereas a model with a Q?>0.99 is likely to be predictive.

e The Maximum Likelihood function has a foundation in Bayesian inference and is commonly
used for parameter estimation problems. If measurement variance values are supplied a-
priori, maximising it is equivalent to maximising the (reduced) chi-squared statistic.

e In first-principles modelling or machine learning applications where measurement error
covariances have been supplied, reduced chi-squared statistic (),,2) fulfils the same role as
the Q7 criterion: it is also normalized and intuitively informative: values close to or below 1
indicate a good model fit (or that the measurement covariance was overestimated...) while
Xv2 > 1indicates a poor fit (or an underestimated covariance).

For applications where the measurement variance is not an order or magnitude smaller than the
variance due to changes in the process, Q° might not be that informative and it might be better to
use the covariance-weighted sum of residuals as an objective criterion: any value relatively close to 1
can be used as a proxy indication of a “good fit”.

In addition to the scoring function in
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Table 2, two other scoring criteria have been used in COPRO:
1. The Fair function. This function is used in the Surface Condenser modelling case study (UVA,

Lenzing). The primary is that it combines a smooth behaviour around error 0 with an
absolute error behaviour for larger errors so that outlier are not weighted as heavily as for

the MSE:
N ly; — 9l lyi — 9l
2 Vi — Vi Vi — Vi
= 7 _ 14+ =7
C E ( C log|1+ C

i=1
2. The “MSE relative to the mean of the measurements”. This is used by COPRO partner TUDO
to provide a “normalized” MSE in the absence of covariance information:
yi?

2.3.2 Statistical tests for model validity

In addition to the scoring criteria, there are a number of statistical tests that can be applied to infer
whether the model fulfils certain hypotheses regarding its accuracy with a desired degree of
confidence. These statistical tests rely on certain assumptions regarding data and the model (each
sample is an independent observation, residuals are distributed normally, linear models). These tests
are typically used to aid in a decision on whether to accept a given candidate model. All of these tests
rely on the assumption that the measurement covariance has been specified or estimated accurately.
All tests are evaluated with a given confidence interval: if a test fails there is a nonzero chance that
the test failed due to random variation alone.

Currently all of these tests are implemented as part of the model validation report after a parameter
estimation activity in gPROMS ModelBuilder (see (Process Systems Enterprise (PSE) Lmtd., 1997-
2018)). In this report we describe the two tests that are most commonly used to evaluate the quality
of a candidate model. Additionally the approach of building a learning curve is described, since this
yields a practical way of determining whether enough data-samples have been used.

2.3.2.1 Chi squared lack-of-fit test
The chi-squared statistic of the model for the testset can be used to determine whether it is likely
that the model represents a good fit. It is assumed to follow a chi-squared distribution with n-1
degrees of freedom. For a given confidence interval the x,,% can be compared to that critical value to
determine if the null hypothesis “The difference between the weighted residual and expected
weighted residual is zero” is satisfied.

2.3.2.2 Parameter confidence intervals
When a model is parameterised with a finite number of parameters, the distribution of for the errors
in each parameter can determined from measurement variances and the fitted models as follows:

xF <0'i2 (%)_2>
- )

where 6—3(;‘ is the derivative of a model prediction with respect to the parameter. A student-t test can

0 ~N (0,

be applied to distribution to determine confidence internal for this parameter at a given confidence
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level. The value is typically compared to the parameter itself to determine whether this parameter
has been estimated sufficiently accurately. It is used in particular in first-principles modelling in place
of cross-validation since it is an alternative way of determining that the model has been over-
parameterized.

2.3.2.3 Learning curve

One question that might arise when evaluating the model quality, in particular when the model
quality is deemed to be insufficient, is whether enough data samples are available for fitting a
particular model. Inspecting the learning curve might answer this question. The learning curve is
generated by taking random subsets of the original dataset with increasing number of samples and
fitting the model to those and noting the training MSE and cross-validation MSE. In general, the
difference between the validation errors and the training error will reduce the more samples are
used for training. Beyond a certain number of samples adding more samples will only marginally
improve the cross-validation score. At this point it can be assumed that enough samples have been
used to generate and validate the model.

2.0 ‘ : :
«—= Training score
«— Cross-validation score
1.5} : :
0 1.0/
s
0.5}

10 20 30 40 50 60 70 80 90
Training examples

Figure 2 Learning curve for a case study from the pharma domain performed by PSE as part of the COPRO project

2.4 Presenting model quality to the user

The user of a model is interested in generating predictions of the model for his/her own input data
set. For this user it is relevant to get the information about model quality that is relevant for this in a
quick and concise manner. This user is typically not concerned with reproducing the model
generation process, and instead needs an answer to the following two questions:

o (model validity) Under which conditions can | use this model?
e (model quality) How good will the predictions of the model then?
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In PSE’s Hybrid Modelling tool, the part of the model quality summary information is integrated in
the specification dialogs of the data-driven model library. The advantage of this is that the user is
presented with this information at the moment linking and configuring in a data-driven model into a
flowsheet. This information is just based on the test set used to during the model generation
process, it does not contain any information from model evaluations for unseen inputs. The type of
information presented is outlined in Table 3 and a screenshot of (an earlier) development version of
this dialog is shown in Figure 3. Note that the information presented is for the entire dataset
associated with a model, if information with a finer granularity is required (e.g. criteria per subset of
experiments) then this summary information is not sufficient.

Table 3 Summary of model quality information as reported to the user of PSE's hybrid modelling tool.

Q’R? This criterion provides the user with | Testset, Cross-validation (@)
an intuitive measure of the quality of Trainingset (R?)
the model in the absence of
significant measurement noise. This
guantity so can be compared across
applications. This allows the user to
have an immediate mental association
from this number with whether the
models are “good” or “bad” for the

dataset.

MSE MSE is commonly used to evaluate | Testset
models and should be provided for | ~ Jcc.\ iidation
comparison with other tools.
Trainingset

Reduced Chi-Squared | When covariances have been supplied | Testset

a-priori, this criterion provides an Cross-validation
intuitive measure of the quality of the

—— Trainingset

MAE MAE is commonly used to evaluate | Testset
models and should be provided for | ~ Jcc.\ iidation
comparison with other tools.
Trainingset
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MAE (per output)

This quantity can be used by the
model user to make an assessment of
how model quality will translate to
prediction uncertainty for each
individual output. It is a worst-case
measure, based on the assumption
that the testset prediction error is
entirely due to lack-of-fit and that

measured error can be neglected.

Testset

Standard deviation of
cross validation MSE

This can be used to assess whether
the prediction quality of the model
assessment is accurate. A large
variance compared to the cross
validation error criterion can indicate
a lack of available data or strong
nonlinear effects present in part of
the dataset.

Cross-validation

Model validity region
upper and lower
input  limits  per
variable

Limits per input for the inputs of the
model. These input limits can be set
by the user during the model
generation process or can be
determined automatically as the limits
for each input in the complete dataset

used to derive the model.

Complete data-set

User specified validity
region constraints

During the model generation process,
the user can define custom
constraints to capture restrictions on
the validity region of the model. These
constraints can be shown in the model

quality summary.

User-specified
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Figure 3 Model quality summary in model specification dialog of PSE's data-driven modelling library

A model quality summary is also presented in ClearVu Analytics at the end of the model generation
process. Figure 4 shows a quality measurement table of the three different modelling approaches
(multilayer perceptron, linear model, random forest). They are divided into three groups, “Final”
being the model fitted on the entire data set, “Learn” are measurements based on the training sets
in the cross-validation and “Validation” are measurements derived on the validation sets used during
cross-validation. There is a visual indicator (green, orange, red) of model quality which is based on
comparison of the “corr” with fixed threshold levels.

In ClearVu Analytics model quality is not monitored specifically for simulations, however for
optimisation purposes the user can restrict the optimiser with constraints to enforce model validity
for optimised solutions.
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random_forest 0.9738 0.003085 0,2243 0.2249 1.683E-05 0.05792 0.004103 0.2407
multilayer_perceptron 0.8243 0.007691 0.5591 0.542 9.313E-05 0.3205 0.00965 0.5661
linear_model 0.8111 0.007856 0.5711 0.5627 9.945E-05  0.3422 0.009972 0.585
+ Quality Group: Learn
random_forest 0.9734 0.003106 0,2258 0.2263 1.706E-05 0.05872 0.004131 0.2423
multilayer_perceptron 0.8218 0.00772 0.5613 0.5447 9.435E-05  0.3247 0.009713 0.5698
linear_model 0.8111 0.007856 0.5711 0.5627 9.944E-05  0.3422 0.009972 0.585
~ Quality Group: Validation
random_forest 0.8603 0.006569 0.4779 0.4705 7.573E-05 0.2611 0.008695 0.5107
multilayer_perceptron 0.8168 0.007755 0.5643 0.5474 9.731E-05 0.3341 0.009846 0.5778
linear_model 0.811 0.007359 0.5715 0.5632 9.952E-05  0.3426 0.009965 0.585
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Version 3.2.411.1732 (Ultimate) v

Figure 4 Model quality information as presented in the ClearVu analytics suite.

2.5 Model quality monitoring

2.5.1 Scenarios for monitoring of model quality
When the model is applied to predict outputs from previously unseen inputs it is important to
monitor whether these predictions are likely to be accurate and remain accurate over the model life-
cycle. In order to arrive at approaches for this, first the different scenarios for model quality monitor
must be considered.

With regards to availability of output measurements, we can consider the following different cases:

o Measurements of the outputs are not available (“open-loop prediction”)
e Measurements of the outputs are available (“closed-loop prediction”)

This first case is encountered when the model used to make predictions which are not (immediately)
validated. This can be when the model is used in e.g. a modelling tool for a design study, as
component of a larger model, etc. For this type of application, it is desirable to have some indication
of expected model quality even if outputs cannot be used directly to assess this quality from
measurements.

The second case is when output measurements are available. This can occur when a user manually
validates the model for a new data-set, or the model is used in online applications where
measurements of model outputs are available.
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Next, with regards to model quality monitoring, we can also distinguish two situations regarding how
many samples are available to make an assessment regarding model quality:

e Model quality is evaluated on a “sample-by-sample” basis
e Model quality is evaluated in a “batch” basis for a given number of samples at the same time.

The first situation occurs when the user of the model performs isolated simulation runs. For each
individual run an assessment of model quality is required.

The second situation may occur if a use decides to check the model against a new dataset. It may
also happen if the model is used in an online application samples are processes consecutively and a
finite horizon window can be used to apply a validation step to the last n seen samples.

For PSE’s hybrid-modelling tool developed within the framework of the COPRO project, we focus on
the “open-loop prediction” case for the “sample-by-sample” basis.

2.5.2 Model quality monitoring for the “open-loop prediction, sample-

by-sample” scenario
If the input data is similar to the data that was used for the training and test sets that were used to
derive and to validate a particular model and the process has not changed, the accuracy of the
predictions is likely to match the accuracy predicted in the model quality report.

If the input data is not similar to the data used for the training and test sets, the accuracy of the
model predictions might be compromised. This similarity between the new input data and the input
data used during the derivation of the model can be monitored. When deviations are observed that
are deemed to affect the applicability of the model, then the user of the model can be warned.

Apart from monitoring the similarity of the input data to that used for the training and sets by some
continuous measure, a more absolute measure of whether in input “valid” can be defined.

When the model is used for optimisation applications, the input space explored by the optimiser can
be restricted in such a way that optimisation results will be limited to the input space that is deemed
to yield valid predictions.

2.5.2.1 Input validity region
The expected validity of the model predictions based on the similarity based the original dataset and
the input space can be captured in certain ways.

First of all, convex regions can be defined in terms of the original model input variables. In the
simplest approach the validity region can be restricted to a hypercube defined by limits on each
individual inputs and/or outputs. This can be understood easily by users but may over-estimate the
true validity region of the model. In particular when the independent variables used in the dataset
are highly-correlated and/or represent distinct clusters in the space of independent variables a
hypercube might be a misleading representation. An advantage of this approach is that it is simple to
understand for the user and also simple for the user during model generation to “override” the
individual limits of variables from those in the training sets and test sets during model generation.

A tighter approximation might be the convex hull of the points in the testset. This comes at the cost
of a more elaborate calculation and reduced understanding from the point of view of the user.
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For models obtained using Partial Least-Squares (PLS) regression (see (Wold, 1985)) there are also
statistical tests that measure the similarity between any new input and the reduced input space for
the PLS model. Two of these have been implemented in PSE’s hybrid modelling tool for model quality
monitoring and are shown below.

2.5.2.2 Distance to the model of X-space (Dmodx)
The “Distance to the model of X-space” (DModX) can be used to determine for PLS-type data-driven
models whether any new observation is close to the reduced input space (or “X space”) of the fitted
PLS model (L. Eriksson, 1999). It is defined as:

i X7 e’

DModX =
° K—A4

Where K is the number input variables and A the number of principal components in the model and
where e are the elements of the matrix E that quantifies the error in the X space:

E =Xpew —TPT
where X0\ is the matrix with “new” samples (or vector for a single sample), P is the PLS model

loadings matrix and T is the PLS model scores matrix.

The DModX can be compared to a critical limit which is found as the inverse of a cumulative F-
distribution function for a desired significance level (default = 5%). Warnings can be produced if this
level is exceeded.

Note that this monitoring criterion is only valid for “PLS/PCA” type models.

2.5.2.3 Hotelling’s T
Hotelling’s T? (see e.g. (L. Eriksson, 1999)) is also a test that can be applied to the input space when
PLS models are used. First, based on a new sample the score is calculated, by multiplication with the
PLS model loadings:

Thew = XnewP

where T, is the matrix with scores for the “new” samples (or vector for a single sample), P is the
PLS model loadings matrix and X,,,,, is the matrix with “new” samples (or vector for a single sample).
These new score(s) are then compared with scores for the testset loading the T? distribution:
a=A _ {2
2 Z <tnew,i,a - ta)
TS = EE—
a=1 a
The Hotelling’s T can be compared to a critical limit which is found as the inverse of a cumulative F-
distribution function for a desired significance level (default = 5%).
2 AN —1)
lerit = N—A

Warnings can be produced if this level is exceeded.

Fcritical (p)
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2.5.2.4 Monitoring internal variables and modelling assumptions in first principle
models
First-principle models many contain correlations derived from literature. In general, these
correlations are derived from controlled experiments and have validity limits. These validity limits are
generally specified in terms of bounds on certain physical quantities or non-dimensional numbers
(Reynolds, Prandtl, ...). In the same way that model validity is monitored for data-driven simulations.
The limits on these variables may also be monitored.

2.5.3 Presenting model quality monitoring information to the user

A key part of model quality monitoring is alerting model users when the model quality is not
acceptable. The evaluation of models in PSE hybrid modelling tool is implemented in gPROMS
ModelBuilder, which has a flowsheeting capability. Therefore, are warnings on model validity can be
displayed directly on the flowsheet by highlighting an icon for a particular model of a unit operation
with a red warning outline, see Figure 5. The user can then inspect the model report and determine
from there if the model validity region criteria were not satisfied for a particular input or output of if
the statistical tests indicate a large dissimilarity between the current input and the testset.

Figure 5 Icons of sensor (“SENS”) models on the flowsheet in PSE's hybrid modelling tool turn red when model quality criteria
are not met.

2.6 lllustrative examples for model quality and model quality
monitoring from the industrial case studies

2.6.1 Industrial Case Study: Granulation (PSE)

PSE has performed a case study (Silva, 2018 (expected)) based on an application from a client: a dry
granulation process. In this process powder particles are fed to a roller compactor unit operation
where they are compacted into a ribbon. The process ends with the compacting of the granules from
the mill in the tablet press. Linked to the output stream of the mill is a Particle Size Distribution (PSD)
sensor which measures the particle size distribution. Attached to this PSD sensor is a soft-sensor
model that predicts the Flow-Function Coefficient (FFC). This sensor is implemented as a data-driven
model using PSE’s hybrid modelling tool.
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Figure 6 gPROMS flowsheet for the PSE granulation case study

To derive the data-driven model, the relation between PSD sensor measurements (cumulative
distributions) and the FFC is estimated from data using PLS regression in scikit-learn. Due to the
limited number of measurement samples, a test set split was not conducted and cross-validation
results (Q2) were used to determine if a model was sufficiently accurate. Covariances for the FFC
measurements were also not available; hence no statistical tests were performed. A model with 3
components was chosen since it maximises the Q2 score. Note that there is a significant difference
between the Q2 and R2 score. This is likely due to having a limited number of samples.

Table 4 Cross validation results for the granulation case study

Hyper-parameter MSPE Q2 R2
(number of

components)0

1 0.826 0.174 0.353
2 0.360 0.640 0.735
3 0.351 0.649 0.801
4 0.390 0.610 0.802

The learning curve (see Figure 7) also illustrates this. On the other hand, the gap between training
and validation MSE remains stationary from 9-17 samples, indicating that enough samples have are
available to capture model behaviour.
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Figure 7 Learning curve for the granulation case study.

When the data-driven soft-sensor model is introduced on the granulation flowsheet and linked to the
XML description of the data-driven model, the model quality tab of the specification dialog displays
the training score and the cross validation score as well as the model validity limits per individual
input and output (see Figure 8).

@ Sensor_data_based (Sensor_data_based gML) X
Rl IEE Model quality information %] CrossValidationScoreOverall
Inputs | ScoreOverall 0.800973
Parameters Input i Categories
Outputs Minimum [ Maximum |
Predicted outputs 2 D1 551 i1
: 2| oso 47628 6001
Specified outputs </ o0 T1aa07 12004
Meodel meta information =| D43 538021 791.278
Model quality Outputinformation Categories
3 Minimum | Maximum Mean value Prediction error (STD) |
2| FFC_new 07324 09934 08738 00336205 |
ok ][ concel || et

Figure 8 Model quality summary for the granulation soft-sensor data-driven model.

The granulation flowsheet contains unit operations with dynamic holdups. The flowsheet can be
solved in a dynamic simulation for variations in key inputs. As the stream conditions change, the PSD
measures a dynamic trajectory of particle size distributions. The data-driven soft-sensor
consequently predicts a dynamic trajectory for the FFC, see Figure 9. The model quality is monitored
using the statistical tests and model validity region specifications. Figure 10 shows that for this
particular trajectory, both statistical tests are above their critical levels for much of the time. At these
moments the model icon will turn red: the model predictions from this data-driven model cannot be
trusted.
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Figure 4.14: Predicted values for the FFC over time

Figure 9 Predicted FFC for variations in time for the granulation flowsheet.
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Figure 10 Plots of the DModx and Hotellings T2 statistical tests, along with critical levels, as the granulation flowsheet is
solved for a dynamic trajectory.

2.6.2 COPRO Industrial Use Case: Cooling Tower (Divis, Lenzing)
In the Lenzing use case a quantitative description of fouling in the involved equipment is of interest
to manage their cleanings. One of the subtasks is to forecast the specific steam consumption of
cooling towers involved in the spin bath cycle based on measurements in the past. The data provided
by Lenzing covers several months of measurements. The data pre-processing consisted mainly in
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defining valid bounds on the measurements and identifying s sections of normal production in
cooperation with an engineer on site. This information was used to filter the data. Another step in
data pre-processing was to prepare the data set for forecasting, i.e., shifting the output variable
(specific steam consumption) by the desired forecasting horizon to the input variables. Then, the
data-driven modelling approach of ClearVu Analytics was used with aforementioned block-wise
cross-validation to find the best’ forecasting model. Figure 11 is a scatter plot visualising the
forecasting quality of the random forest model. With a perfectly forecasting model all points would
be located on the bisecting line. The plot shows the forecasts on the validation sets from the cross-
validation in blue and the forecasts of the final®> model is shown as red points.
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Figure 11 Scatter plot in ClearVu Analytics showing points in the validation and testsets.

2.6.3 COPRO Industrial Use Case: Data-driven models for NH; network
optimisation (TUDO, INEOS)

Due to the different responsibilities of people that create process models and the various application
purposes of such models, the modelling landscape at INEOS in Kdln is manifold. In the planning
procedure, stationary input-output models are used to predict the resource consumption as well as

2 With up to 14 machine learning algorithms ClearVu Anylitcs conducts a parameter optimisation and chooses
the model as best one which has the smallest MSE on the cross-validation sets.
® The model fitted on the entire data set
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the raw material uptake rate of the processing plants depending on the desired production rate (DSP
models). To use these existing heterogeneous models for optimisation of the ammonia network use
case within CoPro, the suitable plant models were translated from the internal and proprietary
modelling languages used at INEOS in K&In into a flexible, modular, and open-source framework. This
framework, the open source Julia programming environment, comes with integration of various
libraries and APIs for integrating data sources, visualizing data, and solving optimisation problems by
compiling the mathematical formulation into formats, which are suited for different open-source and
commercial solvers.

Additionally, new models were created by TUDO for the remaining plants based on production and
planning data provided by INEOS in K&In. These models were created as linear (affine) input-output
relations fitted to the provided production data. Although, these models do not capture the inherent
nonlinearities of the processes, it has been observed that within the operating windows of the
plants, the affine models are capable of predicting the resource and raw material consumption to a
satisfactory degree, as will be shown in the following = uniform accuracy for all outputs.

Exemplary for the evaluation of model quality, in Figure 12 predictions are compared to actual data.
The red circles denote observed operation of the plants. The three different lines without markers
denote the predictions of different origin. The solid line represents the planning data of INEOS in
Kéln (PLAN), which was taken from the internal planning system on site. The dashed-dotted lines
represent the model prediction from the models that were used for planning and optimisation in the
FP7 project DYMASOS. The dashed lines show the predictions of the linear (affine) models that were
created in the CoPro project. It can be seen that within the operating range, the predictions match
the reality most of the time quite accurately. Although, the trend of the data is kept, for some
operating ranges there are offsets in the predictions, which could be caused by the nonlinear nature
of the true processes. However, these regimes do not dominate the majority of the recorded
operating points. The lower part of the figure shows a bar plot with the comparison of the relative
mean error of the models when they are compared to the observed operation.

Another assessment of the model quality during the modelling procedure was the computation of
the mean squared error between the predictions and the observed data, which is displayed as circle
plots for convenience (see Figure 13). It can be seen that for the different streams and this operating
regime of the plant, the linear (affine) models outperform the others, including the internally used
DSP models. Therefore, these models can be employed in the optimisation of the site without loss of
accuracy compared to currently used models.

IMPROVED ENERGY AND RESOURCE EFFICIENCY BY BETTER COORDINATION 33

OF PRODUCTION IN THE PROCESS INDUSTRIES.



Deliverable 1.3 Report on model quality monitoring, model uncertainty quantification, and model
maintenance

Comparison of models and production data

—&— DATA Stream 1

Production/Planning/Prediction

DYMASOS: Stream 7
3 DYMASOS: Stream 8
[ DYMASOS.
I LINVODEL

Relative mean error [%]

Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Stream 8
Stream name.

Figure 12: Comparison of different models created for one of the plants at INEOS in Kéin.

Figure 13: Circle plots for the assessment of
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Using these models in the optimisation of the ammonia network to compute an optimal schedule for
the operation of the plants, allows for an evaluation of the constraints and a comparison with actual
observed operation. Thus, not only the individual plant models but also the overall behaviour, i.e.,
the relations of the streams between the plants, of the overall model can be evaluated. Exemplarily,
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one of these results is shown in Figure 14, where one can see on the left that the scaled tank levels
reflect the observed filling and discharging patterns of ammonia at INEOS in K&In. While the pattern
structure of measurements (solid) and optimised (dashed) behaviour is similar, the deviation that can
be observed when the tanks are being emptied do not result from a mismatch of the models, but
they result from the fact that the optimiser chooses a different operational strategy within the
constraints in order to save energy for the compression of ammonia (Wenzel et al. 2019). The right
side of the figure shows the comparison of the plant operation scheduled by the optimiser, indicated
by the dashed lines, in comparison to the observed operation in reality, indicated by the solid lines. It
can be seen that the level of production is similar for instance for plant P4b, which is running at a
constant production rate most of the time. For the other plants, the different patterns of the
trajectories result from the fact that the optimiser assigns different load levels throughout the
optimisation horizon. Overall it can be said the model satisfies the linking constraints between the
different plants and the accumulated ammonia usage of all plants and matched the reality accurately
(Wenzel et al. 2019).

Concluding it can be stated that the models derived from production data of INEOS in Kdln serve the
purpose within the project and enable a site-wide optimisation of the operating schedule.

g Tank £ Plant
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a) Scaled tank levels. The dashed lines are the observed tank
levels; the solid lines represent the optimised tanks levels.

b) Ammonia usage of the plants. The dashed lines represent
the recorded data and the solid lines represent the
optimised schedule.

Figure 14 : Comparison of optimisation results with the recorded data at INEOS in Kéin.
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3 Model uncertainty quantification

Models of a given process never represent the process under consideration perfectly. They are
always subject to model uncertainty. This means that any predictions made by a model suffer from a
given degree of inaccuracy.

The concept of model uncertainty is closely related to model quality, as model quality criteria aim to
capture how accurate a model will predict for unseen inputs. In the Chapter 0 of this report model
quality is discussed.

3.1 Model uncertainty quantification in the BDP toolbox (INEOS)

3.1.1 Overview of the BDP toolbox (INEOS)

During the MORE project INEOS in Koln developed a framework for monitoring the resource
efficiency of their production plants (Kujanpaa, Marjukka and Hakala, Juha and Pajula, Tiina and
Beisheim, Benedikt and Kramer, Stefan and Ackerschott, Daniel and Kalliski, Marc and Engell,
Sebastian and Enste, Udo and Perez, Jose Luis Pitarch, 2017). The concept of this framework is to
provide the operators with a performance reference model named Best Demonstrated Practice
(BDP), that represents the most resource efficient and stable production at a specific set of non-
influenceable circumstances like ambient conditions or feedstock quality. By comparing the current
resource efficiency indicator (REI) with its BDP, operational improvement potentials (OIP) can be
identified. Figure 15 depicts an illustrative example that represents the concept. The task of the
operator is to keep the OIP, defined as the distance between the REI and the BDP, as small as
possible.

During the CoPro project, INEOS in K&In has developed a method to identify a surrogate performance
model based on the evaluation of historical process data. It employs an extension of state-of-the-art
surrogate modelling techniques, data clustering and model simplification by backward elimination.
The details of this approach can be found in (Beisheim, B., Rahimi-Adli, K., Kramer, S., and Engell, S.;,
2018)
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Figure 15 Toy example of BDP concept
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3.1.2 Model quality for the BDP toolbox models

In this work package the to the BDP modeling approach is extended with an additional step, which
quantifies the probability of the deviation of the resource consumption from the BDP. As mentioned,
the BDP model considers those factors that cannot be influenced by the plant operator at the given
conditions, e.g. plant load or ambient temperature. However, several other influencing
factors/uncertainties are usually present in the process, which influence the resource consumption
of the plant. Figure 16 presents an example of a production plant at INEOS in Kéln, where the BDP
model is shown together with the recorded resource consumption in a given period of time. As
depicted, the performance deviates from the BDP. These deviations arise due to the process
disturbances and sub-optimal operation, which are related to factors not considered in the BDP
model.

A quantification of this performance deviation based on the historical data is advised to estimate the
possible resource consumption at given operation points. The approach here is to first calculate the
OIP for all of the production data points:

OIP,; = REl,; —BDP,; i=12,..,N,

where REI,. ; represents the i data-point for REI of the resource r, and OIP, ; and BDP, ; represent
the respective values for the same data-point. The next step is done by doing a percentile analysis on
the values of OIP and its discretization in to several intervals. The assumption behind this approach is
that for an operating condition in the future, the probability of the deviation from the BDP is the
same as it has happened for the similar conditions the historical data. Doing so, as shown in Figure 18
instead of having a single BDP model, several resource consumptions scenarios with different
probabilities are calculated. Applying this concept to all production plants, the probability
distribution of the site steam demand can be computed. This information can be used for a
stochastic scheduling of the power plant which is under study at INEOS in Koéln. It is expected that the
explicit consideration of uncertainties in the site steam demand results in a more efficient resource
allocation.
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Figure 18 Scenarios with different resource consumptions

3.1 Model uncertainty quantification for PSE’s hybrid modelling

toolbox
Model uncertainty is considered in a simplified manner in PSE’s hybrid modelling toolbox, which is
developed within the framework of the COPRO project. During the model generation phase, the
Mean Absolute Error (see 2.3.1 Scoring functions is calculated for each individual output of a model
for both validation and the testset. The MAE for the testset for is shown, for each individual output,
in the model specification dialog (see Figure 19). The user is presented with this dialog whenever the

model is first used or configured.
While using the MAE for the individual outputs is informative in most situations, it should be

remembered that:
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1. This MAE estimate for the testset is worst case because it likely overestimates the true
prediction error for a new sample. This is because the recorded prediction error for the
testset will include any measurement error in that test set.

2. For a MIMO model the errors in the outputs are not independent. This approach assumes
the prediction error for each individual output is not related to that of any of the other
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Figure 19 Presenting the user with output uncertainty estimations in PSE's hybrid modelling toolbox. For each output an
estimate of the prediction error for unseen data is available based.

For first-principles models PSE’s gPROMS platform (Process Systems Enterprise (PSE) Lmtd., 1997-
2018) already has existing functionality to quantify model uncertainty. When users have performed a
model validation (parameter fitting) task, the confidence interval for these parameters will be
determined. This requires a-priori specification or estimation of measurement variances. For a model
containing one or more parameters for which the “uncertainty” has been determined from a model
validation, gPROMS ModelBuilders “Global System Analysis” functionality can be used to perform a
Monte-Carlo analysis of the effects of this parametric uncertainty on model predictions. It will yield a
“cloud” of samples that can quantify the combined output uncertainty for multiple outputs.
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4 Model maintenance

Maintenance of models in an organization is important in order to maintain the quality of models
during their lifetime and promote their use. This involves keeping track of which models are available
in an organisation, monitoring the quality of the models and, if the quality is not sufficient, to re-fit or
re-model the process. The effort that an organisation is willing to invest in maintaining models may
depend on the value of a model to the organisation over its lifetime.

As part of the COPRO project we have considered the following aspects that relate to model
maintenance:

e Model accessibility: how easy is it for a user in an organisation to find, use or modify a
particular model?

e Model auditing: can someone get insight in exactly how a model was generated? This is
important in order to be able to review a model at any point after the time it was generated
to decide whether it is still valid or needs to be re-fitted or re-modelled.

The proposed approach for model maintenance for the models developed in the framework of the
COPRO project for the INEOS case study is discussed.

4.1 Model accessibility

For models to gain wide use in an organisation it is important that models can be accessed easily.
Within the COPRO project this is consider explicitly in deliverable “D5.5 Requirement Specification
and Functional Design Specification of the COPRO Model Management Platform”. This proposed
management platform allows users to access information about the models within an organisation,
access the model meta information and gain access to the location where a model is stored.
Accessibility of model also involves aspects such as whether modelling tools can be accessed easily in
a corporate IT environment, whether these tools facilitate convenient workflows for predicting and
analysing model outputs for new input data and the level of training required for a user to effectively
use a particular tool.

4.2 Model auditing

When a model has been generated it is important that its generation process can be reviewed at a
later stage. In order to accomplish this, the model generation process must store (serialize) the data
used to generate a model, the resulting model itself, and the algorithms used during the generation
process in a form that makes the process reproducible. This allows others within the organisation or
academic community to inspect and verify results that were obtained. This requires storing the
following information (artefacts):

1. Store the original dataset and the associated units of measurement

Store pre-processing steps

Store test-train-splits for the data or random number generator seed and algorithm
Store the scoring methods

Store the scoring results and the model selection decisions taken.

o v ks wnN

Store the structure and parameters of the chosen model.
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7. Store any “initial guesses” used to initialize the algorithm used to fit the model. This
includes initial guess for model parameters and the model architecture.

8. If a “custom” algorithm is used to generate the model, the source code of this algorithm
would need to be included. If a “standard” algorithm or tool is used then a reference to
the tool and the version can be stored.

Certain modelling tools facilitate workflows where most/all of these artefacts are stored together
(e.g. gPROMS case file format (Process Systems Enterprise (PSE) Lmtd., 1997-2018), Divis ClearVu
(Divis Intelligent Solutions GmbH, 2018)) while others, in particular those where the workflows are
more versatile, (e.g. Matlab (Mathworks, 1994-2018)) rely on the user to explicitly store these
artefacts). There are also tools in development to standardise this storage and retrieval process for a
wider variety of other tools (e.g. see (DataBricks, 2018)).

A certain degree of standardisation exists in practise for the storage methods of most of the artefacts
mentioned above. This type of standardisation depends in most cases on whether the information
type by nature is very heterogeneous for each application/model type or whether its homogeneous.
For example the dataset that is used to derive the model can commonly be expressed as a (multi-
dimensional) table, whereas the description of the model depends on the type of model.

There are different model architectures in statistical modelling and in particular in first-principle
modelling. These can be represented in different formats or modelling or programming languages,
and a “unified” format generally does not exist. In the Python scikit-learn toolkit (Pedregosa, 2011)
for example, the Python interpreter “pickle” functionality can be used to serialize all the objects in
the workspace that relate to the model.

Table 5 Types of artefacts of the model generation process and associated storage formats

Type of information Data format Standardisation

Dataset csv, hdf5, xls High

Pre-processing steps None Low

Test-train-split csv, hdf5, xlIs High

Scoring methods csv, hdf5, xIs, xml High

Scoring results csv, hdf5, xls, xml High — limited range of commonly used

scoring criteria

Model structure and | csv, (proprietary) | Low — depends on modelling software
parameters modelling  software
formats, Python

“pickle” mechanism

Model meta information | xml, json Medium
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4.2.1 Model serialization format

4.2.1.1 Model serialization format for PSE’s hybrid modelling tool

For PSE’s hybrid modelling tool that is developed as part of the COPRO project, an open file-based
model serialisation format is proposed. The approach taken is to define an xml type file format with
an associated public schema definition, which is packaged together with the original dataset(s) used
to derive the model(s) and any other files associated with artefacts. The xml file stores the
information that should permit an independent model audit in a human readable format. The goal is
also to make the format tool-agnostic as much as possible. As many of the artefacts are stored in an
open/standard format different tools/scripts can be written to import/export this data. Order of tags
is preserved and no versioning information is included explicitly to preserve compatibility with source
control tools.

Any data pre-processing steps, except selection of samples, are excluded from the format of this
hybrid modelling. The reason is that the manipulations done using pre-processing are quite varied
and therefore it is difficult to standardise these in a certain format.

The root level of the proposed xml format has the structure as shown in Figure 20.

It contains one or more “DataSources” that represent a source of numerical data. Each DataSource
contains either a reference to an external file or has data directly embedded in an XML CDATA tag.
DataSources use either csv or hdf5 format. DataSources can contain both, experimental data used to
derive the model or data which relates to the model parameters. DataSources expose a map of
unique variable names with associated 0 to 2 dimensional floating point data.

It contains tags for “Inputs” and “Outputs” of the model. These contain lists of variables names with
associated units of measurements and minima and maxima that form the inputs and outputs of the
model(s).

The “DataBasedModel” element has a single property which is the model type. It has two tags inside.
The “Parameters” element is a dictionary that maps parameter names (associated with the
modeltype) to the variables names exposed by the datatypes. The next is the “VariableTransform”
which contains the description of one or more variable transforms that were used for feature
generation from the original inputs.

The main tags of interest here are the “ModelQualitylnformation” and “ModelMetalnformation”
tags. The first contains all information required to present the model quality summary (see
“Presenting model quality monitoring information to the user”, p.28) in human readable XML format.
The second has the model meta information in human readable XML format. This information can be
extracted automatically by the model management platform proposed in deliverable “D5.5
Requirement Specification and Functional Design Specification of the COPRO Model Management
Platform”.

<Model>

<Inputs>
<Outputs>

<DataBasedModels type="modeltype”>
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<Parameters>

<VariableTransforms>

<ModelQualityInformation>

<ModelMetalnformation>
</DataBasedModels>
<DataSources>

</Model>

Figure 20 Structure of proposed xml format for model serialization

4.2.1.2 Serialization for linear/affine models at INEOS

The optimisation model of the ammonia network optimisation will be implemented in a software
toolchain that involves the data integration framework of Leikon and the visualisation solutions for
an HMI of Sabisu. Hence, the model has to be formulated in a generic fashion that enables the
interaction of the HMI with the model. For instance, it has to be possible that an operator manually
adjusts a constraint in the HMI which is then propagated through the data integration platform to
the model formulation. Hence, in order to ensure full flexibility and efficient handling of the models,
only the raw structure of the models, i.e., the constraints and input-output relations, have been
implemented within the mathematical models, which are used for the optimisation of the ammonia
network. The numerical values of the most recent model parameters, however, are pulled from a
database before each optimisation run and constraints with the numerical values are compiled into
the solver format. For this purpose, a SQLite database was set up with unique identifiers for each
plant, tank, and stream. This data source can then be seamlessly substituted with the data sources
that are offered by the data integration platform.

4.3 Model maintenance for the models in the INEOS case study

Similar to the case where constraints can be manually adjusted via the HMI, the model parameters
can be adjusted. Whenever a model parameter changes due to various reasons, such as degradation,
fouling, cleaning, or bounds on variables, i.e., minimum/maximum tank levels or other process
constraints are changed, the database can be updated by the user of the tool via either convenient
GUIs that are available to manipulate the database, or the database can be updated by external
programs that are linked to production systems via command line queries. Within the envisioned
toolchain in the project it would also be able to add an expert interface to the HMI with an expert
user account and the respective access rights to change to model parameters. This architecture
enables a seamless integration into the tool chain that is planned within the project for a successful
implementation of the scheduling tool at the site of INEOS. Major changes to the structure and thus
the optimization model formulation are required if for example piping equipment changes or
additional equipment is installed. This approach, possibly with a model quality monitoring plugin to
trigger the update of model parameters and model structure, will contribute to a concise and clean
management of the models during the project and while the tool is run at the industrial partner.
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5 Conclusions and recommendations

In this work package the partners in COPRO have examined how to ensure that models can be
trusted to predict accurately over their lifetime, how to quantify that degree of accuracy, and how
organisations can maintain models.

Central to this is the concept of model quality. This concept, as discussed in Section 2, is established
as part of a sound model generation procedure. It quantifies whether models will predict accurately
for unseen (or “new”) data. Some of scoring criteria used to determine “accuracy” at that point can
also be used to get an indication of model uncertainty.

In this section we review the current practise, summarize insights the work on the COPRO industrial
case studies performed in the scope of this deliverable has yielded, and give some recommendations
to safeguard model quality during the model life-cycle and increase awareness of model uncertainty.

5.1 Conclusions and recommendations related to model quality

There are commonly accepted elements of workflows for model generation, such as cross-validation,
splitting of training and testdata and verification of statistical tests (see Section 2.2.1). In first-
principles modelling these practises are not followed that commonly, except possibly the verification
of a limited number of statistical tests. In the data-driven modelling cross-validation is commonly
done and test-train splitting is done in cases where data is plentiful or where the modelling study is
organised in such a way that the party involved in modelling does not get access to the test data.
Cross-validation is simple to do for steady-state data. For time series data it is a bit more involved
due to the care that needs to be taken when splitting the data in “blocks”.

Recommendation: The practise of using cross-validation should be followed if only to give an
indication of how accurately the model will predict for unseen data. This includes “first-principle
modelling” studies where this practise is not yet very common. The model can be fitted using “all the
available data” afterwards when data is not plentiful. When data is plentiful it is also recommended
to do a test-train split, since this is also easy to implement.

There are a range of measures that quantify how accurately models predict a given data (see Section
2.3.1). These measures are used to summarize model performance for a given set of training,
validation and test-data in a single number. They are both used to drive estimation/fitting algorithms
as well as to report on model quality at the end of the fitting procedure. In practise, different
measures are used in different applications, and typically only a single measure, if any, is reported,
making it hard to compare model performance. In machine learning reporting is a bit more extensive
as typically at least both the training and validation score are reported in a certain measure.

Recommendation: Modelling tools and users should report a range of scoring criteria after model
generation. These are quick to evaluate. This will make comparative studies or quick comparisons
easier. These should include criteria that give an intuitive feel for the “absolute” quality of the model
(e.g. @, XxZ). The commonly used abbreviations for these scoring criteria should appear as labels
(MAE, MSE, ...). Due to the potential for confusion between different abbreviations and the “Bessel”
and “Non-Bessel” corrected variations a formula should be provided as well where possible. With the
possible exception of R*/Q’ it is probably better to indicate explicitly to which dataset a criterion
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applies (e.g. training/cross validation) than rely on single letter prefixes (e.g. “MSE Training”, “MSE
Cross-Validation” rather than “MSE”, “MSPE”).

When scoring criteria are listed directly, this may not be insightful enough to less expert users of a
modelling tool. In particular criteria such as “MSE” that are not invariant of the scale of variables
being predicted might not give these users a good understanding of the accuracy of the model.

Recommendation: Modelling tools and model management platforms should present model quality in
an easily accessible manner for novice users (“traffic light system”) both at the end of the model
generation procedure and before any use of a model (see e.g. Section 2.4). While this might give
irrelevant or subjective information in certain cases, that drawback is outweighed by the fact that this
forces all users to consider the model quality aspect of their modelling work. These traffic lights
should be derived to Q* when no covariances have been supplied or to the cross-validation or testset
xZ and its associated “lack-of-fit test” when covariances have been supplied.

Providing a-priori values for covariances of different measurements gives access to a range of
statistical tests to evaluate model quality (see Sections 2.2.2.2 and 2.3.2). This is not commonly done
for data-driven modelling (machine learning), presumably because certain algorithms do not allow
taking this into account and because the data used commonly in the machine learning domain has
low measurement uncertainty. In applications where it is difficult or effort-intensive to obtain these
covariances they are also taken as the overall signal covariance or for time-series by using frequency-
separation (i.e. assume all high-frequency variation is measurement noise). For first-principles
modelling this is more commonly done because of the fact that these models are commonly MIMO
(see section 2.2.2.2) and because the uncertainty distribution for fitted parameters is an insightful
metric.

Recommendation: It is difficult to give a general recommendation on whether it is worth it to obtain
a-priori values for measurement variances. This mainly depends on a case-by-case basis on the
following factors:

1. How difficult are the measurement noise variances to obtain?
What is the relative amount of measurement noise compared to the overall variation in the
output signal?

3. Is the measurement variance is absolute (i.e. not dependent on each individual measurement
value)

Low effort for obtaining measurement variances as well as high relative amount of measurement
noise would motivate a-priori specification. The third factor, whether the noise is absolute, is a pre-
condition for easily including the effect of measurement noise variance in some machine learning
algorithms, e.g. PLS.

The validity range of a model is often only considered in an ad-hoc manner in the sense that the
person using the model has expert knowledge of the limitations of the model. For first-principle
models it is sometimes optimistically assumed that the model will predict well beyond the range it
has been validated in. Modelling tools generally do not indicate during the use of the model whether
the model is valid for the data provided.

Recommendation: Present the validity range of the a model to the user in a way that strikes a balance

between being insightful and accurate and indicate using a “traffic light” system whether any “new”
data does not fall in this validity range (“model quality monitoring”) (Section 2.5.2.1). The person who
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creates the model should be able to set the limits of the model validity. The user of the model should
be able to adjust the confidence intervals if statistical tests are used to determine the model validity.

5.2 Conclusions and recommendations related to model
uncertainty

Currently, model are often provided as-is and users typically do not take model uncertainty into
account beyond possibly running a few scenarios based on their understanding (“expert knowledge”)
of the process and the main uncertainties.

Recommendation: Present a basic intuitive indication of model uncertainty to the user when they are
starting to use the model based on the cross-validation or test set score(s) of a model (see Section 3).
At least they are then aware of the caveats of using the model. For MISO models this can be the
overall MAE and for MIMO models the MAE per output for the cross-validation or testset. This might
be conservative in the sense that it overestimates the “true” uncertainty (because the cross-validation
or testsets might have an associated measurement accuracy). For MIMO models the MAE per output
also might not capture correlations between output errors. But such measure does provide the user
with an intuitive indication that might prevent gross misuse of a model. If a more detailed
understanding of the input and model uncertainties is required for the purposes of risk assessment
studies, the recommendation is to run a Monte-Carlo simulation (“Global System Analysis” analysis in
gPROMS).

5.3 Conclusions and recommendations related to model
maintenance

Model maintenance is a complex topic that touches on best practises, IT infrastructure,
organisational culture and cost/benefit analysis. Within the framework of the COPRO project, not all
these aspects can be considered. Instead, the current practise in COPRO partner organisations is
considered and some practical recommendations are made to improve best practises with regards to
storing results of modelling activities (see Section 4).

Recommendation: First of all, to use proper IT infrastructure where possible to aid in the
management on models (version control, access to modelling applications, storage of modelling
artefacts). In larger organisations the use of a model management system (see COPRO deliverable
“D5.5 Requirement Specification and Functional Design Specification of the COPRO Model
Management Platform”) can be considered. Next, a recommendation is to store model quality
information together with the model in an accessible manner. This model quality information could
even be stored at the level of the model management system. An open question with regards to
storing model meta information is whether to store this as part of the version control system, within
the modéel file structure or within the model management system. Finally, a recommendation is to use
a “snapshot” format for each particular fit of a model. This snapshot format should include the data
used, the choices made during the model generation and the resulting iteration of the model and
should permit an audit of the model generation process
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