O



# COORDINATED PRODUCTION FOR BETTER RESOURCE EFFICIENCY





## Optimisation of the operation of an industrial power plant under demand uncertainty

#### Goal of the use case

The goal is to optimise the operation of a power plant in an industrial production site under uncertainty of the future steam demand. The power plant of INEOS in Köln is the subject of the investigation.



## Challenges of operation planning

Uncertainty in steam demand

- Influence of operators
- External influences which are not considered
- Deviations from the production plan
- Other unknown sources



#### Negative effects of uncertainties

Excessive steam in the network

- Condensation of the steam
- Venting of the steam

Insufficient steam in the network

- Buy steam from provider (limited)
- Change production rates of plants



#### Two-stage optimisation

Some of the data are uncertain

Described by a set of discrete scenarios

First-stage decisions

 "Here and now" decisions, taken prior to the realization of the uncertainties

Second-stage (recourse) decisions

 "Wait and see" decisions, taken to react to the realisation of the uncertainty

#### Model of the uncertainties

3 demand regions are defined

Two deviation points in the second stage

A variation of the probabilities of the scenarios with the current state is identified

#### Formulation of the optimisation

The optimisation is formulated as an MILP

- Mass and energy balances
  - Time-invariant enthalpies
- Linear models for the equipment
- Binary variables for the operating modes and mode transitions of the equipment





min (opearation costs) s.t. mass balances,

model equations,
energy balances,
equipment constraints,
mode transitions constraints,
demand targets

#### Optimisation on a rolling horizon

Combines the advantages of **preventive** and **reactive** scheduling

- Model parameters updated at the beginning of the optimization horizons and assumed as constant
  - -Burner and boiler efficiencies, Lower Heating Values (LHVs), enthalpy of the streams, injections, bypasses, balance errors
- Update of the probability distribution of the scenarios

#### **Comparison framework**

Boiler 4

**→** 2ST

--- EV

Simulates the operation of two planners

- Simulates a set of steam demand realisations
  - The set represents the distribution of the scenario probabilities
- Compares the results of planning for the approaches



#### **Test case I: Normal operation**

The realisations of the steam scenarios are simulated using 160 optimisations

 Each optimisation with a horizon of 56 h

The stochastic solution improves the economics by **10.7**% compared to the deterministic solution



#### Test case II: An extreme scenario

Shows the difference between a deterministic and a stochastic solution in handling extreme cases

 Deterministic solution does not cover all of the possible realisations in the future, and can fail in reacting to extreme changes



### Summary and conclusion

New optimisation framework developed

- Handles the uncertainty of the future steam demand
- The model parameters are updated online
- Reduces the chances of extreme shortcomings in the steam network
- Reduces the operational costs for the normal daily operating conditions significantly



Developers:

Keivan Rahimi-Adli, M.Sc. keivan.rahimi-adli@ineos.com

Prof. Dr. Sebastian Engell sebastian.engell@tu-dortmund.de

Further contanct:

Benedikt Beisheim, M.Sc. benedikt.beisheim@ineos.com



